Ядерный коллайдер. Открытия, сделанные в большом адронном коллайдере
С помощью большого адронного коллайдера ученые открыли 5 новых субатомных частиц
Большой адронный коллайдер (БАК), новейшая установка Европейской организация по ядерным исследованиям, является самым мощным ускорителем элементарных частиц в мире. Он представляет собой подземный круговой тоннель протяженностью 27 километров и оснащен сверхпроводящими магнитами и различным оборудованием, позволяющим ускорять и сталкивать между собой различные частицы на скоростях, близких к скорости света.
Уровень энергии, создающийся при столкновении направленных друг на друга частиц, позволяет расщеплять обычную материю на еще более компактные частицы вроде кварков и глюонов. Благодаря этому ученые могут напрямую изучать фундаментальные частицы материи и порой, если повезет, даже открывать новые. В общем, проект очень масштабный, дорогой, но того стоит.
На сегодняшний день более 10 000 ученых и инженеров работают сообща и пытаются с помощью БАКа больше узнать о фундаментальных свойствах нашей физики. И эта работа действительно дает свои плоды. Команда БАКа доказала существование Бозона Хиггса, потенциально опровергает существование паранормального и открывает новые виды частиц. И хотя в течение нескольких лет ситуация вокруг БАКа несколько приутихла, последний отчет ученых говорит в пользу того, что открытия продолжаются и по сей день.
В рамках эксперимента LHCb ученые заявляют об открытии новой системы из пяти субатомных частиц. При этом все открытые субатомные частицы были обнаружены в рамках одного анализа. Обнаружить новое состояние частицы – уже само по себе можно считать достижением, но открытие сразу пяти разных состояний одной частицы в рамках одного исследования можно считать вообще выдающимся случаем.
Каждая из пяти частиц представляют собой возбужденное состояние Omega-c-zero – частицы с тремя кварками. Частицы получили следующие наименования, согласно общепринятому стандарту: Ωc(3000)0, Ωc(3050)0, Ωc(3066)0, Ωc(3090)0 and Ωc(3119)0.
Теперь ученым необходимо определить их квантовые номера, а также потенциальное теоретическое значение. По мнению исследователей, открытие этих частиц позволит дополнить наше понимание взаимосвязи между кварками и мультикварковыми состояниями, что, в свою очередь, в дальнейшем разрешит заполнить некоторые из пробелов в наших знаниях о Вселенной и квантовой теории в целом.
Сам же ЦЕРН называет это открытие «почвой для новых и выдающихся результатов в физических исследованиях».
Открытия, подобные этому, ясно показывают, что международное сотрудничество в сфере науки очень сложно переоценить. На данный момент БАК является крупнейшим международным проектом в истории. В стенах лабораторий и центров исследований трудятся ученые из более чем 85 стран мира. Поэтому вполне неудивительно, что такой уровень сотрудничества позволит нам войти в новую эру физики и открыть новые двери в нашем понимании того, как работает эта Вселенная.
В течение следующих месяцев и лет мощности БАКа будут использоваться для изучения так называемого «темного сегмента физики». Будут осуществляться новые попытки открытия ранее неизвестных частиц, а также решаться вопросы, связанные с самыми потаенными загадками Вселенной. Речь идет о темной материи, параллельных измерениях, а также условиях и состояниях, которые могли иметься в самые ранние моменты Большого взрыва.
Блеск и нищета ускорителя
Что сейчас происходит с Большим адронным коллайдером
Большой адронный коллайдер (БАК) был запущен 10 сентября 2008 года. Через девять дней в крупнейшем на планете ускорителе элементарных частиц произошла авария, и ученые вынуждены были прекратить работу на нем. Непосредственно перед запуском БАК и спустя некоторое время после поломки в СМИ появлялось огромное количество новостей о коллайдере, но постепенно информационный поток иссяк. Что сейчас происходит с БАК и вокруг него?
Фальстарт
Запуска БАК с нетерпением ждали не только физики, но и люди, которые последний раз вспоминали об этой науке в школе. Такое нетипичное внимание к исследованиям старательно поддерживалось журналистами, в том числе и далекими от науки. Кроме того, важную роль в “раскрутке” коллайдера сыграли работающие на нем специалисты, что является нетипичным для ученых поведением.
После проведения столь активной рекламной кампании специалисты БАК не могли обмануть ожидания миллионов жителей Земли и отложить запуск ускорителя. Знаменательное событие было намечено на 10 сентября 2008 года, однако незадолго до этого срока ученые столкнулись с рядом технических проблем. В назначенный день первые пучки протонов прошли по 27-километровому кольцу ускорителя. Исследователи прогнали протоны сначала по часовой стрелке, а потом и против, перевыполнив намеченную ранее программу.
Следующие несколько дней ученые радовались, что созданная ими колоссальная установка работает как надо (хотя небольшие технические затруднения периодически возникали), а обыватели – что Землю не поглотила черная дыра. Но 19 сентября около полудня ситуация вышла из-под контроля. Около сотни магнитов коллайдера вышли из сверхпроводящего состояния, которое возможно при температуре ниже 1,9 кельвина (-271,3 градуса Цельсия). Магниты начали нагреваться, и когда температура достигла 100 кельвинов, в туннель ускорителя было выброшено около шести тонн жидкого гелия из криогенной системы, поддерживающей магнит в сверхпроводящем состоянии.
Вышедшие из строя магниты относятся к так называемым поворотным магнитам. Они необходимы для того, чтобы удерживать пучки протонов на правильной траектории. В магнитную систему БАК также входят фокусирующие магниты, которые препятствуют “разбеганию” положительно заряженных протонов из-за электростатического отталкивания. Магниты специального назначения, установленные в двух точках – там, где протоны попадают в ускорительное кольцо и выходят из него, – контролируют пучок только во время его инжекции и сброса.
Сразу после аварии стало ясно, что коллайдер получил серьезные повреждения, однако точная оценка причиненного ущерба заняла длительное время. Туннель ускорителя находится на глубине 100 метров, и в нем поддерживается стабильно низкая температура. Для того чтобы понять, что и почему произошло 19 сентября, ученым необходимо было прогреть поврежденную секцию до комнатной температуры, а затем частично разобрать конструкции БАК.
В итоговом заключении технической комиссии CERN (Европейский центр ядерных исследований, международная организация, курирующая проект БАК), выпущенном 5 декабря 2008 года, был сделан вывод, что причиной аварии стал брак при монтаже одного из контактов между магнитами. Размер причиненного ущерба был оценен в 21 миллион долларов. На ремонтные работы планировалось потратить половину этой суммы, а оставшиеся 10 миллионов должны были пойти на покупку новых магнитов.
Чуть позже генеральный директор CERN Рольф-Дитер Хойер объявил, что починка БАК обойдется почти на треть дороже. Согласно новым подсчетам, ориентировочная стоимость работ составит 26 миллионов долларов. Выросла и предполагаемая длительность ремонта. Изначально представители CERN говорили о двух месяцах, затем срок увеличился до полугода. В настоящее время ученые обещают начать пробные пуски протонов в конце сентября – октябре 2009 года.
Два наиболее сильно поврежденных участка. Фото с сайта cern.ch
Помимо собственно замены или ремонта поврежденных магнитов специалисты CERN разработали диагностическую систему, которая способна выявлять повреждения, способные спровоцировать новую аварию. С помощью этой системы уже были обнаружены несколько дефектных соединений в других секторах ускорительного кольца. В начале мая ученые выяснили, что некоторые контакты могут содержать дефекты несколько иного типа. Часть из них было решено заменить на новые.
Средства на устранение последствий аварии должны были предоставить страны-участники CERN. Дополнительные расходы и сами по себе не являются приятным событием, а тут еще грянул финансовый кризис. Выделение средств не на спасение экономики, а на непонятный прибор со сложным названием показалось разумной идеей не всем государствам.
В начале мая 2009 года Австрия заявила о своем желании выйти из CERN. По мнению официальных лиц, правительство смогло бы с большей пользой для страны потратить 17 миллионов, которые ежегодно уходят в бюджет CERN. Австрийские ученые восприняли решение правительства крайне негативно, и 18 мая канцлер страны объявил о том, что Австрия останется в составе CERN.
Не только БАК
Несмотря на то что на ремонт БАК уходит огромное количество ресурсов, CERN продолжает поддерживать и другие научные проекты. С 10 по 13 мая в Центре прошла конференция, посвященная их обсуждению. Для проведения большей части экспериментов ученые задействуют “разгоночные” ускорительные кольца БАК (перед тем как попасть в 27-километровый туннель, протоны набирают скорость в меньших по размеру кольцах). Программу конференции и ссылки на тексты докладов можно найти здесь.
Том Хэнкс в роли профессора Лэнгдона. Кадр из фильма “Ангелы и демоны”
Параллельно с чисто научной деятельностью CERN продолжает активно вести просветительскую работу. Одновременно с премьерой фильма Рона Говарда “Ангелы и демоны” был запущен сайт, на котором разъясняется суть упоминающихся в картине научных явлений. По сюжету главные герои пытаются спасти Ватикан, который злоумышленники хотят разрушить при помощи созданной в CERN антиматерии. Частично на сайте воспроизводится опубликованная ранее научно-популярная статья об антивеществе, но некоторые разделы сайта, посвященные экспериментам на БАК и бозону Хиггса, являются новыми.
Научную основу картины, снятой по мотивам одноименного романа Дэна Брауна, нельзя назвать безукоризненной. Тем не менее, представители CERN активно сотрудничают со съемочной группой и используют фильм для рекламы коллайдера. Во время визита в CERN в феврале исполнитель главной роли Том Хэнкс дал согласие принять участие в церемонии повторного запуска БАК.
Еще одной категорией граждан (помимо любителей кино), которых CERN пытается приобщить к экспериментам БАК, стали дети. В конце марта 2009 года в Сети появилась “Цернландия” – сайт, на котором можно совершить путешествие в мультяшный БАК. Выполняя различные квесты, посетители сайта узнают названия и суть проводимых на коллайдере экспериментов и назначение различных установок БАК.
Что дальше?
Технические неполадки, возникшие в коллайдере, являются серьезными (учитывая размеры БАК – очень серьезными). Для их устранения специалистам CERN придется приложить огромное количество усилий, и не исключено, что в ходе проверок будут обнаружены новые дефекты. На данный момент трудно сказать, смогут ли ученые получить финансирование в достаточном объеме для того, чтобы вновь попытаться уничтожить Землю и провести грандиозный эксперимент. Тем не менее, исследователи не теряют оптимизма, а научная жизнь в CERN продолжает развиваться. А это самое главное.
Ожидание и реальность: результаты работы Большого адронного коллайдера
Европейский центр ядерных исследований, или просто ЦЕРН, – место, где рядом с вами в столовой запросто может обедать нобелевский лауреат по физике. Он известен во всем мире благодаря самому мощному ускорителю частиц – Большому адронному коллайдеру. Спустя почти десять лет работы пришло время подвести итог – оправдал ли надежды ученых один из самых амбициозных научных проектов современности?
В 2008 году я училась в десятом классе. Несмотря на то, что в те годы я еще совершенно не интересовалась физикой, волна ажиотажа не смогла обойти меня стороной: из каждого утюга трубили, что вот-вот запустят «машину судного дня». Что как только Очень Важный Директор поднимет рубильник, образуется черная дыра и нам всем конец. В день официального старта Большого адронного коллайдера некоторые учителя даже позволили на своих уроках посмотреть репортаж с места событий.
Самого страшного не произошло. По большому счету, не произошло ничего – рубильник был поднят, на экране компьютера заскакали непонятные простому обывателю цифры, а ученые начали праздновать. В общем, зачем запускали, было непонятно.
Несомненно, без Большого адронного коллайдера ученые не смогли бы совершить некоторые знаменательные открытия – в том числе речь идет об обнаружении бозоне Хиггса. Но все ли из запланированного удастся реализовать, и есть ли еще перспективы у БАК – об этом и расскажем.
Эксперимент DELPHI Большого электрон-позитронного коллайдера
Старший брат: Большой электрон-позитронный коллайдер
В конце семидесятых годов XX века физика элементарных частиц развивалась семимильными шагами. Для проверки предсказаний Стандартной модели в 1976 году был предложен проект Большого электрон-позитронного коллайдера (БЭП или LEP – от англ. Large Electron-Positron Collider) в Европейском центре ядерных исследований (ЦЕРН, от фр. CERN – Conseil Européen pour la Recherche Nucléaire). Среди множества различных конфигураций был выбран вариант расположения будущего эксперимента в подземном тоннеле длиной 27 километров. Ему предполагалось ускорять электроны и позитроны до энергий порядка десятков и сотен гигаэлектронвольт: встречные пучки пересекались в четырех точках, в которых впоследствии расположились эксперименты ALEPH, DELPHI, OPAL и L3.
С точки зрения физиков энергии никогда не бывает мало: выбранный в итоге для реализации вариант БЭП был компромиссом между стоимостью и мощностью; рассматривались и туннели большей длины, способные сильнее ускорять частицы. Итоговая энергия могла использоваться для проверки Стандартной модели, но была слишком мала для поиска так называемой «новой физики» – явлений, которые не предсказываются ее законами. Гораздо лучше для таких целей подходят адронные коллайдеры – ускорители составных частиц вроде протонов, нейтронов и атомных ядер. Еще в 1977 году, в момент обсуждения БЭП, Джон Адамс, директор ЦЕРН в то время, предлагал сделать туннель шире, и разместить там сразу оба ускорителя – и электрон-позитронный, и адронный. Однако, совет, принимающий итоговые решения, эту идею отклонил, и в 1981 году был утвержден проект Большого электрон-позитронного коллайдера.
Туннель Большого адронного коллайдера
На смену приходит LHC
БЭП проработал больше десяти лет: с 1989 по 2000 год. Этому времени принадлежит ряд знаменательных экспериментов, таких как подтверждение предсказанных масс переносчиков слабого взаимодействия – W- и Z-бозонов, а также измерение различных параметров Стандартной модели с беспрецедентной точностью. И уже в 1984 году была проведена конференция «Большой адронный коллайдер в туннеле LEP», посвященная вопросу строительства нового коллайдера после прекращения работы предшественника.
В 1991 году был окончательно утвержден проект Большого адронного коллайдера (БАК или LHC – от англ. Large Hadron Collider), при помощи которого планировалось достигнуть суммарной энергии сталкивающихся частиц в 14 тераэлектронвольт, то есть в сто раз большей, чем развивал Большой электрон-позитронный коллайдер.
В 1992 году была проведена встреча, посвященная научной программе Большого адронного коллайдера: всего было получено двенадцать заявок на различные эксперименты, которые могли бы быть построены на месте четырех точек столкновения пучков. В течении последующих лет были одобрены два эксперимента общей направленности – ATLAS и CMS, эксперимент ALICE по изучению тяжелых ионов и LHCb, посвященный физике частиц, содержащих b-кварки. Сооружение Большого адронного коллайдера началось в 2000 году, а первые пучки были получены уже в 2008 году: с тех пор и по сей день, помимо планового отключения, LHC в рабочем режиме ускоряет частицы и набирает данные.
Россия в ЦЕРН
Российская Федерация с 1993 года является страной-наблюдателем в ЦЕРН, что дает право ее представителями присутствовать на заседаниях, но не дает права голосовать при принятии важных решений. В 2012 году от имени Правительства РФ было внесено заявление о намерении вступления Российской Федерации в ассоциированные члены ЦЕРН, которое на настоящий момент не было поддержано.
Всего в проектах ЦЕРН участвует около 700 российских ученых из двенадцати научных организаций, таких как Объединенный институт ядерных исследований, Российский научный центр «Курчатовский институт», Институт ядерных исследований Российской академии наук и Московский государственный университет имени М.В. Ломоносова.
Инжекционная цепь Большого адронного коллайдера
Как выгодно ускорять частицы?
Схема работы Большого адронного коллайдера состоит из множества этапов. Перед тем как попасть непосредственно в БАК, частицы проходят ряд стадий пред-ускорения: таким образом набор скорости происходит быстрее и при этом с меньшими затратами энергии. Сначала в линейном ускорителе LINAC2 протоны или ядра достигают энергии в 50 мегаэлектронвольт; затем они поочередно попадают в бустерный синхротрон (PSB), протонный синхротрон (PS) и протонный суперсинхротрон (SPS), и на момент инжекции в коллайдер итоговая энергия частиц составляет 450 гигаэлектронвольт.
Помимо основных четырех экспериментов в тоннеле Большого адронного коллайдера, предускорительная система является площадкой для более чем десяти экспериментов, которым не требуется столь большая энергия частиц. В их число входят, в частности, эксперимент NA61/SHINE, исследующий параметры взаимодействия тяжелых ионов с фиксированной мишенью; эксперимент ISOLDE, исследующий свойства атомных ядер, а также AEGIS, исследующий гравитационное ускорение Земли при помощи антиводорода.
Поиски частицы Бога и новой физики
Еще в самом начале, на этапе разработки, была заявлена претенциозная научная программа Большого адронного коллайдера. В первую очередь, вследствие указаний, полученных на БЭП, планировался поиск бозона Хиггса – еще гипотетической в то время составляющей Стандартной модели, отвечающей за массу всех частиц. В том числе в планы ученых входил и поиск суперсимметричного бозона Хиггса и его суперпартнеров, входящих в минимальное суперсимметричное расширение Стандартной модели.
В целом как отдельное направление планировался поиск и проверка моделей «новой физики». Для проверки суперсимметрии, в которой каждому бозону сопоставляется фермион, и наоборот, предполагалось вести поиски соответствующих партнеров для частиц Стандартной модели. Для проверки теорий с дополнительными пространственными измерениями, таких как теория струн или М-теория, были заявлены возможности постановки ограничений на число измерений в нашем мире. Именно поиск отклонений от Стандартной модели считали, и до сих пор считают одной из основных задач БАК.
Менее громкие задачи: исследование кварк-глюонной плазмы и нарушения CP-инвариантности
Топ-кварк, самый тяжелый из шести кварков Стандартной модели, до Большого адронного коллайдера наблюдался лишь на ускорителе Тэватрон в Национальной ускорительной лаборатории имени Энрико Ферми в США из-за своей крайне большой массы в 173 гигаэлектронвольта. При столкновениях в БАК, благодаря его мощности, ожидалось рождение большого числа топ-кварков, которые интересовали ученых в двух аспектах. Первый был связан с изучением иерархии частиц: на данный момент наблюдается три поколения кварков (топ-кварк завершил третье), но не исключено, что их все же больше. С другой стороны, рождение бозона Хиггса при распаде топ-кварка считалось основным способом его экспериментального детектирования.
В 1964 году было открыто нарушение комбинированной CP-инвариантности (от англ. «charge» – заряд и «parity» – четность), которое соответствует зеркальному отображению нашего мира с полной заменой всех частиц на соответствующие античастицы. Данный факт играет важную роль в теориях образования Вселенной, которые пытаются объяснить, почему все наше вещество состоит именно из материи, а не из антиматерии. В том числе нарушение CP-четности проявляется в поведении B-мезонов – частиц, активное рождение которых предполагалось в процессе столкновений в БАК, и с их помощью ученые надеялись пролить свет на причины данного явления.
Работа Большого адронного коллайдера в режиме столкновения тяжелых ядер должна была приводить к воссозданию состояния кварк-глюонной плазмы, которое, по современным представлениям, наблюдается через 10-5 секунд после Большого взрыва – состоянию настолько «горячему», что кварки и глюоны не взаимодействуют друг с другом, и не образуют частицы и ядра, как это происходит в нормальном состоянии. Понимание процессов возникновения и охлаждения кварк-глюонной плазмы необходимо для изучения процессов квантовой хромодинамики – раздела физики, ответственного за описание сильных взаимодействий.
Схема открытия бозона Хиггса в эксперименте ATLAS
Открытие новых частиц на LHC
Итак, чем же может похвастаться за целое десятилетие своей работы Большой адронный коллайдер?
Во-первых, конечно же, самое известное из открытий – обнаружение в июле 2012 года бозона Хиггса массой 126 гигаэлектронвольт. Всего годом позднее Питер Хиггс и Франсуа Энглер были удостоены Нобелевской премии по физике за теоретическое предсказание существования «частицы Бога», ответственной за массу всего вещества во Вселенной. Теперь, однако, перед физиками стоит новая задача – понять, почему искомый бозон имеет именно такую массу; также продолжаются и поиски суперсимметричных партнеров бозона Хиггса.
В 2015 году в эксперименте LHCb были обнаружены стабильные пентакварки – частицы, состоящие из пяти кварков, а годом позднее – кандидаты на роль тетракварков – частиц, состоящих из двух кварков и двух антикварков. До этих пор считалось, что наблюдаемые частицы состоят не более чем из трех кварков, и физикам еще предстоит уточнить теоретическую модель, которая бы описала подобные состояния.
Все еще в пределах Стандартной модели
Физики надеялись, что БАК сможет решить проблему суперсимметрии – либо полностью ее опровергнуть, либо уточнить, в каком направлении стоит двигаться, поскольку вариантов подобного расширения Стандартной модели огромное количество. Пока что не удалось сделать ни того, ни другого: ученые ставят различные ограничения на параметры суперсимметричных моделей, которые могут отсеять самые простые варианты, но точно не решают глобальных вопросов.
Не было получено так же и явных указаний на физические процессы вне Стандартной модели, на которые, пожалуй, рассчитывало большинство ученых. Однако, стоит отметить, что в эксперименте LHCb также было получено указание на то, что B-мезон, тяжелая частица, содержащая в себе b-кварк, распадается не таким образом, как предсказывает Стандартная модель. Подобное поведение само по себе может служить, например, указанием на существование еще одного нейтрального переносчика слабого взаимодействия – Z’ бозона. Пока что ученые работают над набором экспериментальных данных, которые позволят ограничить различные экзотические сценарии.
Возможная схема будущего 100-километрового коллайдера
Пора начинать рыть новый туннель?
Смог ли Большой адронный коллайдер оправдать вложенные в него силы и средства? Несомненно, хоть и не все поставленные цели по итогам десятилетия пока что достигнуты. В настоящий момент идет второй этап работы ускорителя, после чего будет произведена плановая установка и начнется третья стадия набора данных.
Ученые не теряют надежды произвести следующие великие открытия и уже планируют новые коллайдеры, например, с длиной туннеля в целых 100 километров.
Источники:
https://hi-news.ru/research-development/s-pomoshhyu-bolshogo-adronnogo-kollajdera-uchenye-otkryli-5-novyx-subatomnyx-chastic.html
https://m.lenta.ru/articles/2009/05/20/cern/
https://futurist.ru/articles/1360-ozhidanie-i-realynosty-rezulytati-raboti-bolyshogo-adronnogo-kollaydera