14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный коллайдер. Открытия, сделанные в большом адронном коллайдере

С помощью большого адронного коллайдера ученые открыли 5 новых субатомных частиц

Большой адронный коллайдер (БАК), новейшая установка Европейской организация по ядерным исследованиям, является самым мощным ускорителем элементарных частиц в мире. Он представляет собой подземный круговой тоннель протяженностью 27 километров и оснащен сверхпроводящими магнитами и различным оборудованием, позволяющим ускорять и сталкивать между собой различные частицы на скоростях, близких к скорости света.

Уровень энергии, создающийся при столкновении направленных друг на друга частиц, позволяет расщеплять обычную материю на еще более компактные частицы вроде кварков и глюонов. Благодаря этому ученые могут напрямую изучать фундаментальные частицы материи и порой, если повезет, даже открывать новые. В общем, проект очень масштабный, дорогой, но того стоит.

На сегодняшний день более 10 000 ученых и инженеров работают сообща и пытаются с помощью БАКа больше узнать о фундаментальных свойствах нашей физики. И эта работа действительно дает свои плоды. Команда БАКа доказала существование Бозона Хиггса, потенциально опровергает существование паранормального и открывает новые виды частиц. И хотя в течение нескольких лет ситуация вокруг БАКа несколько приутихла, последний отчет ученых говорит в пользу того, что открытия продолжаются и по сей день.

В рамках эксперимента LHCb ученые заявляют об открытии новой системы из пяти субатомных частиц. При этом все открытые субатомные частицы были обнаружены в рамках одного анализа. Обнаружить новое состояние частицы – уже само по себе можно считать достижением, но открытие сразу пяти разных состояний одной частицы в рамках одного исследования можно считать вообще выдающимся случаем.

Каждая из пяти частиц представляют собой возбужденное состояние Omega-c-zero – частицы с тремя кварками. Частицы получили следующие наименования, согласно общепринятому стандарту: Ωc(3000)0, Ωc(3050)0, Ωc(3066)0, Ωc(3090)0 and Ωc(3119)0.

Теперь ученым необходимо определить их квантовые номера, а также потенциальное теоретическое значение. По мнению исследователей, открытие этих частиц позволит дополнить наше понимание взаимосвязи между кварками и мультикварковыми состояниями, что, в свою очередь, в дальнейшем разрешит заполнить некоторые из пробелов в наших знаниях о Вселенной и квантовой теории в целом.

Сам же ЦЕРН называет это открытие «почвой для новых и выдающихся результатов в физических исследованиях».

Открытия, подобные этому, ясно показывают, что международное сотрудничество в сфере науки очень сложно переоценить. На данный момент БАК является крупнейшим международным проектом в истории. В стенах лабораторий и центров исследований трудятся ученые из более чем 85 стран мира. Поэтому вполне неудивительно, что такой уровень сотрудничества позволит нам войти в новую эру физики и открыть новые двери в нашем понимании того, как работает эта Вселенная.

В течение следующих месяцев и лет мощности БАКа будут использоваться для изучения так называемого «темного сегмента физики». Будут осуществляться новые попытки открытия ранее неизвестных частиц, а также решаться вопросы, связанные с самыми потаенными загадками Вселенной. Речь идет о темной материи, параллельных измерениях, а также условиях и состояниях, которые могли иметься в самые ранние моменты Большого взрыва.

Блеск и нищета ускорителя

Что сейчас происходит с Большим адронным коллайдером

Большой адронный коллайдер (БАК) был запущен 10 сентября 2008 года. Через девять дней в крупнейшем на планете ускорителе элементарных частиц произошла авария, и ученые вынуждены были прекратить работу на нем. Непосредственно перед запуском БАК и спустя некоторое время после поломки в СМИ появлялось огромное количество новостей о коллайдере, но постепенно информационный поток иссяк. Что сейчас происходит с БАК и вокруг него?

Фальстарт

Запуска БАК с нетерпением ждали не только физики, но и люди, которые последний раз вспоминали об этой науке в школе. Такое нетипичное внимание к исследованиям старательно поддерживалось журналистами, в том числе и далекими от науки. Кроме того, важную роль в “раскрутке” коллайдера сыграли работающие на нем специалисты, что является нетипичным для ученых поведением.

После проведения столь активной рекламной кампании специалисты БАК не могли обмануть ожидания миллионов жителей Земли и отложить запуск ускорителя. Знаменательное событие было намечено на 10 сентября 2008 года, однако незадолго до этого срока ученые столкнулись с рядом технических проблем. В назначенный день первые пучки протонов прошли по 27-километровому кольцу ускорителя. Исследователи прогнали протоны сначала по часовой стрелке, а потом и против, перевыполнив намеченную ранее программу.

Следующие несколько дней ученые радовались, что созданная ими колоссальная установка работает как надо (хотя небольшие технические затруднения периодически возникали), а обыватели – что Землю не поглотила черная дыра. Но 19 сентября около полудня ситуация вышла из-под контроля. Около сотни магнитов коллайдера вышли из сверхпроводящего состояния, которое возможно при температуре ниже 1,9 кельвина (-271,3 градуса Цельсия). Магниты начали нагреваться, и когда температура достигла 100 кельвинов, в туннель ускорителя было выброшено около шести тонн жидкого гелия из криогенной системы, поддерживающей магнит в сверхпроводящем состоянии.

Вышедшие из строя магниты относятся к так называемым поворотным магнитам. Они необходимы для того, чтобы удерживать пучки протонов на правильной траектории. В магнитную систему БАК также входят фокусирующие магниты, которые препятствуют “разбеганию” положительно заряженных протонов из-за электростатического отталкивания. Магниты специального назначения, установленные в двух точках – там, где протоны попадают в ускорительное кольцо и выходят из него, – контролируют пучок только во время его инжекции и сброса.

Читать еще:  Джек лондон морской волк читать онлайн. «Морской Волк» Джек Лондон

Сразу после аварии стало ясно, что коллайдер получил серьезные повреждения, однако точная оценка причиненного ущерба заняла длительное время. Туннель ускорителя находится на глубине 100 метров, и в нем поддерживается стабильно низкая температура. Для того чтобы понять, что и почему произошло 19 сентября, ученым необходимо было прогреть поврежденную секцию до комнатной температуры, а затем частично разобрать конструкции БАК.

В итоговом заключении технической комиссии CERN (Европейский центр ядерных исследований, международная организация, курирующая проект БАК), выпущенном 5 декабря 2008 года, был сделан вывод, что причиной аварии стал брак при монтаже одного из контактов между магнитами. Размер причиненного ущерба был оценен в 21 миллион долларов. На ремонтные работы планировалось потратить половину этой суммы, а оставшиеся 10 миллионов должны были пойти на покупку новых магнитов.

Чуть позже генеральный директор CERN Рольф-Дитер Хойер объявил, что починка БАК обойдется почти на треть дороже. Согласно новым подсчетам, ориентировочная стоимость работ составит 26 миллионов долларов. Выросла и предполагаемая длительность ремонта. Изначально представители CERN говорили о двух месяцах, затем срок увеличился до полугода. В настоящее время ученые обещают начать пробные пуски протонов в конце сентября – октябре 2009 года.

Два наиболее сильно поврежденных участка. Фото с сайта cern.ch

Помимо собственно замены или ремонта поврежденных магнитов специалисты CERN разработали диагностическую систему, которая способна выявлять повреждения, способные спровоцировать новую аварию. С помощью этой системы уже были обнаружены несколько дефектных соединений в других секторах ускорительного кольца. В начале мая ученые выяснили, что некоторые контакты могут содержать дефекты несколько иного типа. Часть из них было решено заменить на новые.

Средства на устранение последствий аварии должны были предоставить страны-участники CERN. Дополнительные расходы и сами по себе не являются приятным событием, а тут еще грянул финансовый кризис. Выделение средств не на спасение экономики, а на непонятный прибор со сложным названием показалось разумной идеей не всем государствам.

В начале мая 2009 года Австрия заявила о своем желании выйти из CERN. По мнению официальных лиц, правительство смогло бы с большей пользой для страны потратить 17 миллионов, которые ежегодно уходят в бюджет CERN. Австрийские ученые восприняли решение правительства крайне негативно, и 18 мая канцлер страны объявил о том, что Австрия останется в составе CERN.

Не только БАК

Несмотря на то что на ремонт БАК уходит огромное количество ресурсов, CERN продолжает поддерживать и другие научные проекты. С 10 по 13 мая в Центре прошла конференция, посвященная их обсуждению. Для проведения большей части экспериментов ученые задействуют “разгоночные” ускорительные кольца БАК (перед тем как попасть в 27-километровый туннель, протоны набирают скорость в меньших по размеру кольцах). Программу конференции и ссылки на тексты докладов можно найти здесь.

Том Хэнкс в роли профессора Лэнгдона. Кадр из фильма “Ангелы и демоны”

Параллельно с чисто научной деятельностью CERN продолжает активно вести просветительскую работу. Одновременно с премьерой фильма Рона Говарда “Ангелы и демоны” был запущен сайт, на котором разъясняется суть упоминающихся в картине научных явлений. По сюжету главные герои пытаются спасти Ватикан, который злоумышленники хотят разрушить при помощи созданной в CERN антиматерии. Частично на сайте воспроизводится опубликованная ранее научно-популярная статья об антивеществе, но некоторые разделы сайта, посвященные экспериментам на БАК и бозону Хиггса, являются новыми.

Научную основу картины, снятой по мотивам одноименного романа Дэна Брауна, нельзя назвать безукоризненной. Тем не менее, представители CERN активно сотрудничают со съемочной группой и используют фильм для рекламы коллайдера. Во время визита в CERN в феврале исполнитель главной роли Том Хэнкс дал согласие принять участие в церемонии повторного запуска БАК.

Еще одной категорией граждан (помимо любителей кино), которых CERN пытается приобщить к экспериментам БАК, стали дети. В конце марта 2009 года в Сети появилась “Цернландия” – сайт, на котором можно совершить путешествие в мультяшный БАК. Выполняя различные квесты, посетители сайта узнают названия и суть проводимых на коллайдере экспериментов и назначение различных установок БАК.

Что дальше?

Технические неполадки, возникшие в коллайдере, являются серьезными (учитывая размеры БАК – очень серьезными). Для их устранения специалистам CERN придется приложить огромное количество усилий, и не исключено, что в ходе проверок будут обнаружены новые дефекты. На данный момент трудно сказать, смогут ли ученые получить финансирование в достаточном объеме для того, чтобы вновь попытаться уничтожить Землю и провести грандиозный эксперимент. Тем не менее, исследователи не теряют оптимизма, а научная жизнь в CERN продолжает развиваться. А это самое главное.

Ожидание и реальность: результаты работы Большого адронного коллайдера

Европейский центр ядерных исследований, или просто ЦЕРН, – место, где рядом с вами в столовой запросто может обедать нобелевский лауреат по физике. Он известен во всем мире благодаря самому мощному ускорителю частиц – Большому адронному коллайдеру. Спустя почти десять лет работы пришло время подвести итог – оправдал ли надежды ученых один из самых амбициозных научных проектов современности?

В 2008 году я училась в десятом классе. Несмотря на то, что в те годы я еще совершенно не интересовалась физикой, волна ажиотажа не смогла обойти меня стороной: из каждого утюга трубили, что вот-вот запустят «машину судного дня». Что как только Очень Важный Директор поднимет рубильник, образуется черная дыра и нам всем конец. В день официального старта Большого адронного коллайдера некоторые учителя даже позволили на своих уроках посмотреть репортаж с места событий.

Читать еще:  Секреты из жизни стриптиз-клуба: девочки, шоу, закулисье, правила.

Самого страшного не произошло. По большому счету, не произошло ничего – рубильник был поднят, на экране компьютера заскакали непонятные простому обывателю цифры, а ученые начали праздновать. В общем, зачем запускали, было непонятно.

Несомненно, без Большого адронного коллайдера ученые не смогли бы совершить некоторые знаменательные открытия – в том числе речь идет об обнаружении бозоне Хиггса. Но все ли из запланированного удастся реализовать, и есть ли еще перспективы у БАК – об этом и расскажем.

Эксперимент DELPHI Большого электрон-позитронного коллайдера

Старший брат: Большой электрон-позитронный коллайдер

В конце семидесятых годов XX века физика элементарных частиц развивалась семимильными шагами. Для проверки предсказаний Стандартной модели в 1976 году был предложен проект Большого электрон-позитронного коллайдера (БЭП или LEP – от англ. Large Electron-Positron Collider) в Европейском центре ядерных исследований (ЦЕРН, от фр. CERN – Conseil Européen pour la Recherche Nucléaire). Среди множества различных конфигураций был выбран вариант расположения будущего эксперимента в подземном тоннеле длиной 27 километров. Ему предполагалось ускорять электроны и позитроны до энергий порядка десятков и сотен гигаэлектронвольт: встречные пучки пересекались в четырех точках, в которых впоследствии расположились эксперименты ALEPH, DELPHI, OPAL и L3.

С точки зрения физиков энергии никогда не бывает мало: выбранный в итоге для реализации вариант БЭП был компромиссом между стоимостью и мощностью; рассматривались и туннели большей длины, способные сильнее ускорять частицы. Итоговая энергия могла использоваться для проверки Стандартной модели, но была слишком мала для поиска так называемой «новой физики» – явлений, которые не предсказываются ее законами. Гораздо лучше для таких целей подходят адронные коллайдеры – ускорители составных частиц вроде протонов, нейтронов и атомных ядер. Еще в 1977 году, в момент обсуждения БЭП, Джон Адамс, директор ЦЕРН в то время, предлагал сделать туннель шире, и разместить там сразу оба ускорителя – и электрон-позитронный, и адронный. Однако, совет, принимающий итоговые решения, эту идею отклонил, и в 1981 году был утвержден проект Большого электрон-позитронного коллайдера.

Туннель Большого адронного коллайдера

На смену приходит LHC

БЭП проработал больше десяти лет: с 1989 по 2000 год. Этому времени принадлежит ряд знаменательных экспериментов, таких как подтверждение предсказанных масс переносчиков слабого взаимодействия – W- и Z-бозонов, а также измерение различных параметров Стандартной модели с беспрецедентной точностью. И уже в 1984 году была проведена конференция «Большой адронный коллайдер в туннеле LEP», посвященная вопросу строительства нового коллайдера после прекращения работы предшественника.

В 1991 году был окончательно утвержден проект Большого адронного коллайдера (БАК или LHC – от англ. Large Hadron Collider), при помощи которого планировалось достигнуть суммарной энергии сталкивающихся частиц в 14 тераэлектронвольт, то есть в сто раз большей, чем развивал Большой электрон-позитронный коллайдер.

В 1992 году была проведена встреча, посвященная научной программе Большого адронного коллайдера: всего было получено двенадцать заявок на различные эксперименты, которые могли бы быть построены на месте четырех точек столкновения пучков. В течении последующих лет были одобрены два эксперимента общей направленности – ATLAS и CMS, эксперимент ALICE по изучению тяжелых ионов и LHCb, посвященный физике частиц, содержащих b-кварки. Сооружение Большого адронного коллайдера началось в 2000 году, а первые пучки были получены уже в 2008 году: с тех пор и по сей день, помимо планового отключения, LHC в рабочем режиме ускоряет частицы и набирает данные.

Россия в ЦЕРН

Российская Федерация с 1993 года является страной-наблюдателем в ЦЕРН, что дает право ее представителями присутствовать на заседаниях, но не дает права голосовать при принятии важных решений. В 2012 году от имени Правительства РФ было внесено заявление о намерении вступления Российской Федерации в ассоциированные члены ЦЕРН, которое на настоящий момент не было поддержано.

Всего в проектах ЦЕРН участвует около 700 российских ученых из двенадцати научных организаций, таких как Объединенный институт ядерных исследований, Российский научный центр «Курчатовский институт», Институт ядерных исследований Российской академии наук и Московский государственный университет имени М.В. Ломоносова.

Инжекционная цепь Большого адронного коллайдера

Как выгодно ускорять частицы?

Схема работы Большого адронного коллайдера состоит из множества этапов. Перед тем как попасть непосредственно в БАК, частицы проходят ряд стадий пред-ускорения: таким образом набор скорости происходит быстрее и при этом с меньшими затратами энергии. Сначала в линейном ускорителе LINAC2 протоны или ядра достигают энергии в 50 мегаэлектронвольт; затем они поочередно попадают в бустерный синхротрон (PSB), протонный синхротрон (PS) и протонный суперсинхротрон (SPS), и на момент инжекции в коллайдер итоговая энергия частиц составляет 450 гигаэлектронвольт.

Помимо основных четырех экспериментов в тоннеле Большого адронного коллайдера, предускорительная система является площадкой для более чем десяти экспериментов, которым не требуется столь большая энергия частиц. В их число входят, в частности, эксперимент NA61/SHINE, исследующий параметры взаимодействия тяжелых ионов с фиксированной мишенью; эксперимент ISOLDE, исследующий свойства атомных ядер, а также AEGIS, исследующий гравитационное ускорение Земли при помощи антиводорода.

Поиски частицы Бога и новой физики

Еще в самом начале, на этапе разработки, была заявлена претенциозная научная программа Большого адронного коллайдера. В первую очередь, вследствие указаний, полученных на БЭП, планировался поиск бозона Хиггса – еще гипотетической в то время составляющей Стандартной модели, отвечающей за массу всех частиц. В том числе в планы ученых входил и поиск суперсимметричного бозона Хиггса и его суперпартнеров, входящих в минимальное суперсимметричное расширение Стандартной модели.

Читать еще:  Стендап-комик дмитрий романов в контакте. Дмитрий Романов биография

В целом как отдельное направление планировался поиск и проверка моделей «новой физики». Для проверки суперсимметрии, в которой каждому бозону сопоставляется фермион, и наоборот, предполагалось вести поиски соответствующих партнеров для частиц Стандартной модели. Для проверки теорий с дополнительными пространственными измерениями, таких как теория струн или М-теория, были заявлены возможности постановки ограничений на число измерений в нашем мире. Именно поиск отклонений от Стандартной модели считали, и до сих пор считают одной из основных задач БАК.

Менее громкие задачи: исследование кварк-глюонной плазмы и нарушения CP-инвариантности

Топ-кварк, самый тяжелый из шести кварков Стандартной модели, до Большого адронного коллайдера наблюдался лишь на ускорителе Тэватрон в Национальной ускорительной лаборатории имени Энрико Ферми в США из-за своей крайне большой массы в 173 гигаэлектронвольта. При столкновениях в БАК, благодаря его мощности, ожидалось рождение большого числа топ-кварков, которые интересовали ученых в двух аспектах. Первый был связан с изучением иерархии частиц: на данный момент наблюдается три поколения кварков (топ-кварк завершил третье), но не исключено, что их все же больше. С другой стороны, рождение бозона Хиггса при распаде топ-кварка считалось основным способом его экспериментального детектирования.

В 1964 году было открыто нарушение комбинированной CP-инвариантности (от англ. «charge» – заряд и «parity» – четность), которое соответствует зеркальному отображению нашего мира с полной заменой всех частиц на соответствующие античастицы. Данный факт играет важную роль в теориях образования Вселенной, которые пытаются объяснить, почему все наше вещество состоит именно из материи, а не из антиматерии. В том числе нарушение CP-четности проявляется в поведении B-мезонов – частиц, активное рождение которых предполагалось в процессе столкновений в БАК, и с их помощью ученые надеялись пролить свет на причины данного явления.

Работа Большого адронного коллайдера в режиме столкновения тяжелых ядер должна была приводить к воссозданию состояния кварк-глюонной плазмы, которое, по современным представлениям, наблюдается через 10-5 секунд после Большого взрыва – состоянию настолько «горячему», что кварки и глюоны не взаимодействуют друг с другом, и не образуют частицы и ядра, как это происходит в нормальном состоянии. Понимание процессов возникновения и охлаждения кварк-глюонной плазмы необходимо для изучения процессов квантовой хромодинамики – раздела физики, ответственного за описание сильных взаимодействий.

Схема открытия бозона Хиггса в эксперименте ATLAS

Открытие новых частиц на LHC

Итак, чем же может похвастаться за целое десятилетие своей работы Большой адронный коллайдер?

Во-первых, конечно же, самое известное из открытий – обнаружение в июле 2012 года бозона Хиггса массой 126 гигаэлектронвольт. Всего годом позднее Питер Хиггс и Франсуа Энглер были удостоены Нобелевской премии по физике за теоретическое предсказание существования «частицы Бога», ответственной за массу всего вещества во Вселенной. Теперь, однако, перед физиками стоит новая задача – понять, почему искомый бозон имеет именно такую массу; также продолжаются и поиски суперсимметричных партнеров бозона Хиггса.

В 2015 году в эксперименте LHCb были обнаружены стабильные пентакварки – частицы, состоящие из пяти кварков, а годом позднее – кандидаты на роль тетракварков – частиц, состоящих из двух кварков и двух антикварков. До этих пор считалось, что наблюдаемые частицы состоят не более чем из трех кварков, и физикам еще предстоит уточнить теоретическую модель, которая бы описала подобные состояния.

Все еще в пределах Стандартной модели

Физики надеялись, что БАК сможет решить проблему суперсимметрии – либо полностью ее опровергнуть, либо уточнить, в каком направлении стоит двигаться, поскольку вариантов подобного расширения Стандартной модели огромное количество. Пока что не удалось сделать ни того, ни другого: ученые ставят различные ограничения на параметры суперсимметричных моделей, которые могут отсеять самые простые варианты, но точно не решают глобальных вопросов.

Не было получено так же и явных указаний на физические процессы вне Стандартной модели, на которые, пожалуй, рассчитывало большинство ученых. Однако, стоит отметить, что в эксперименте LHCb также было получено указание на то, что B-мезон, тяжелая частица, содержащая в себе b-кварк, распадается не таким образом, как предсказывает Стандартная модель. Подобное поведение само по себе может служить, например, указанием на существование еще одного нейтрального переносчика слабого взаимодействия – Z’ бозона. Пока что ученые работают над набором экспериментальных данных, которые позволят ограничить различные экзотические сценарии.

Возможная схема будущего 100-километрового коллайдера

Пора начинать рыть новый туннель?

Смог ли Большой адронный коллайдер оправдать вложенные в него силы и средства? Несомненно, хоть и не все поставленные цели по итогам десятилетия пока что достигнуты. В настоящий момент идет второй этап работы ускорителя, после чего будет произведена плановая установка и начнется третья стадия набора данных.

Ученые не теряют надежды произвести следующие великие открытия и уже планируют новые коллайдеры, например, с длиной туннеля в целых 100 километров.

Источники:

https://hi-news.ru/research-development/s-pomoshhyu-bolshogo-adronnogo-kollajdera-uchenye-otkryli-5-novyx-subatomnyx-chastic.html
https://m.lenta.ru/articles/2009/05/20/cern/
https://futurist.ru/articles/1360-ozhidanie-i-realynosty-rezulytati-raboti-bolyshogo-adronnogo-kollaydera

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:
Для любых предложений по сайту: [email protected]